AI_Site

SURF: Summarizer of User Reviews Feedback

599c7bee601a182cd27740b7  ·  Andrea Di Sorbo,Sebastiano Panichella,Carol V. Alexandru,Corrado A. Visaggio,Gerardo Canfora ·

Continuous Delivery (CD) enables mobile developers to release small, high quality chunks of working software in a rapid manner. However, faster delivery and a higher software quality do neither guarantee user satisfaction nor positive business outcomes. Previous work demonstrates that app reviews may contain crucial information that can guide developer's software maintenance efforts to obtain higher customer satisfaction. However, previous work also proves the difficulties encountered by developers in manually analyzing this rich source of data, namely (i) the huge amount of reviews an app may receive on a daily basis and (ii) the unstructured nature of their content. In this paper, we propose SURF (Summarizer of User Reviews Feedback), a tool able to (i) analyze and classify the information contained in app reviews and (ii) distill actionable change tasks for improving mobile applications. Specifically, SURF performs a systematic summarization of thousands of user reviews through the generation of an interactive, structured and condensed agenda of recommended software changes. An end-to-end evaluation of SURF, involving 2622 reviews related to 12 different mobile applications, demonstrates the high accuracy of SURF in summarizing user reviews content. In evaluating our approach we also involve the original developers of some apps, who confirm the practical usefulness of the software change recommendations made by SURF. Demo URL: https://youtu.be/Yf-U5ylJXvo Demo webpage: http://www.ifi.uzh.ch/en/seal/people/panichella/tools/SURFTool.html

Code


Tasks


Datasets


Problems


Methods


Results from the Paper